Metric Diophantine approximation and ‘ absolutely friendly ’ measures
نویسنده
چکیده
Let W (ψ) denote the set of ψ-well approximable points in Rd and let K be a compact subset of Rd which supports a measure μ. In this short note, we show that if μ is an ‘absolutely friendly’ measure and a certain μ–volume sum converges then μ(W (ψ) ∩K) = 0. The result obtained is in some sense analogous to the convergence part of Khintchines classical theorem in the theory of metric Diophantine approximation. The class of absolutely friendly measures is a subclass of the friendly measures introduced in [2] and includes measures supported on self similar sets satisfying the open set condition. We also obtain an upper bound result for the Hausdorff dimension of W (ψ) ∩K.
منابع مشابه
Diophantine Extremality of the Patterson Measure
We derive universal Diophantine properties for the Patterson measure μG associated with a convex cocompact Kleinian group G acting on (n + 1) -dimensional hyperbolic space. We show that μG is always a S -friendly measure, for every (G, μG) neglectable set S , and deduce that if G is of non-Fuchsian type then μG is an absolutely friendly measure in the sense of [7]. Consequently, by a result of ...
متن کاملDiophantine Exponents of Measures: a Dynamical Approach
We place the theory of metric Diophantine approximation on manifolds into a broader context of studying Diophantine properties of points generic with respect to certain measures on Rn. The correspondence between multidimensional Diophantine approximation and dynamics of lattices in Euclidean spaces is discussed in an elementary way, and several recent results obtained by means of this correspon...
متن کاملDiophantine Properties of Measures and Homogeneous Dynamics
This is a survey of the so-called “quantitative nondivergence” approach to metric Diophantine approximation developed approximately 10 years ago in my collaboration with Margulis. The goal of this paper is to place the theory of approximation on manifolds into a broader context of studying Diophantine properties of points generic with respect to certain measures on Rn. The correspondence betwee...
متن کاملErgodic Theory on Homogeneous Spaces and Metric Number Theory
Article outline This article gives a brief overview of recent developments in metric number theory, in particular, Diophantine approximation on manifolds, obtained by applying ideas and methods coming from dynamics on homogeneous spaces. Glossary 1. Definition: Metric Diophantine approximation 2. Basic facts 3. Introduction 4. Connection with dynamics on the space of lattices 5. Diophantine app...
متن کاملOn Fractal Measures and Diophantine Approximation
We study diophantine properties of a typical point with respect to measures on Rn. Namely, we identify geometric conditions on a measure μ on Rn guaranteeing that μ-almost every y ∈ Rn is not very well multiplicatively approximable by rationals. Measures satisfying our conditions are called ‘friendly’. Examples include smooth measures on nondegenerate manifolds; thus this paper generalizes the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005